第1.0.1条为在钢结构设计中贯彻执行国家的技术经济政策,做到技术先进、经济合理、安全适用、确保质量,特制定本规范。
第1.0.3条本规范的设计原则是根据《建筑结构设计统 一标准》(CBJ68-84))制订的。
第1.0.4条设计钢结构时,应从工程实际情况出发,合理选用材料、结构方案和构造措施,满足结构在运输、安装和使用过程中的强度、稳定性和刚度要求,宜优先采用定型的和标准化的结构和构件,减少制作、安装工作量,符合防火要求,注意结构的抗腐蚀性能。
第1.0.5条在钢结构设计图纸和钢材订货文件中,应注明所采用的钢号(对普通碳素钢尚应包括钢类、炉种、脱氧程度等)、连接材料的型号(或钢号)和对钢材所要求的机械性能和化学成分的附加保证项目。此外,在钢结构设计图纸中还应注明所要求的焊缝质量级别(焊缝质量级别的检验标准应符合国家现行《钢结构工程施工及验收规范》)。
第1.0.6条对有特殊设计要求和在特殊情况下的钢结构设计,尚应符合国家现行有关规范的要求。
第2.0.1条承重结构的钢材,应根据结构的重要性、荷载特征、连接方法、工作温度等不同情况选择其钢号和材质。承重结构的钢材宜采用平炉或氧气转炉3号钢(沸腾钢或镇 静钢)、16Mn钢、16Mnq钢、15MnV钢或15MnVq钢,其质量应分别符合现行标准《普通碳素结构钢技术条件》、《低合金结构钢技术条件》和《桥梁用碳素钢及普通低合金钢钢板技术条件》的规定。
一、焊接结构:重级工作制吊车梁、吊车桁架或类似结构,冬季计算温度等于或低于-20℃时的轻、中级工作制吊车梁、吊车桁架或类似结构,以及冬季计算温度等于或低于-30℃时的其它承重结构。
二、非焊接结构:冬季计算温度等于或低于-20℃时的重级 工作制吊车梁、吊车桁架或类似结构。
注:冬季计算温度应按国家现行《采暖通风和空气调节设计规范》中规定的冬季空气调节室外计算温度确定,对采暖房屋内的结构可按该规定值提高10℃采用。
第2.0.3条承重结构的钢材应具有抗拉强度、伸长率、屈服强度(或屈服点)和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。承重结构的钢材,必要时尚应具有冷弯试验的合格保证。对于重级工作制和吊车起重量等于或大于50t的中级工作制 焊接吊车梁、吊车桁架或类似结构的钢材,应具有常温冲击韧性的合格保证。但当冬季计算温度等于或低于-20℃时,对于3号钢尚应具有-20℃冲击韧性的合格保证;对于16Mn钢、16Mnq钢、15MnV钢或15MnVq钢尚应具有-40℃冲击韧性的合格保证。对于重级工作制的非焊接吊车梁、吊车桁架或类似结构的钢材,必要时亦应具有冲击韧性的合格保证。
一、手工焊接采用的焊条,应符合现行标准《碳钢焊条》或《低合金钢焊条》的规定。选择的焊条型号应与主体金属强度相适应。对重级工作制吊车梁、吊车桁架或类似结构,宜采用低氢型焊条。
二、自动焊接或半自动焊接采用的焊丝和焊剂,应与主体金属强度相适应。焊丝应符合现行标准《焊接用钢丝》的规定。
三、普通螺栓可采用现行标准《普通碳素结构钢技术条件》中规定的3号钢制成。
四、高强度螺栓应符合现行标准《钢结构用高强度大六角头 螺栓、大六角螺母、垫圈型式尺寸与技术条件》或《钢结构用扭剪型高强度螺栓连接副型式尺寸与技术条件》的规定。
五、铆钉应采用现行标准《普通碳素钢铆螺用热轧圆钢技术条件》中规定的ML2或ML3号钢制成。
六、锚栓可采用现行标准《普通碳素结构钢技术条件》中规定的3号钢或《低合金结构钢技术条件》中规定的16Mn钢制成。
第3.1.1条本规范除疲劳计算外,采用以概率理论为基础的极限状态设计方法,用分项系数的设计表达式进行计算。
第3.1.2条结构的极限状态系指结构或构件能满足设计规定的某一功能要求的临界状态,超过这一状态结构或构件便不再能满足设计要求。承重结构应按下列承载能力极限状态和正常使用极限状态进行设计:
一、承载能力极限状态为结构或构件达到最大承载能力或达到不适于继续承载的变形时的极限状态;
二、正常使用极限状态为结构或构件达到正常使用的某项规定限值时的极限状态。
第3.1.3条设计钢结构时,应根据结构破坏可能产生的后果,采用不同的安全等级。一般工业与民用建筑钢结构的安全等级可取为二级,特殊建筑钢结构的安全等级可根据具体情况另行确定。
第3.1.4条按承载能力极限状态设计钢结构时,应考虑荷载效应的基本组合,必要时尚应考虑荷载效应的偶然组合。按正常使用极限状态设计钢结构时,除钢与混凝土组合梁外,应只考虑荷载短期效应组合。
第3.1.5条计算结构或构件的强度、稳定性以及连接的强度时,应采用荷载设计值(荷载标准值乘以荷载分项系数);计算疲劳和正常使用极限状态的变形时,应采用荷载标准值。
第3.1.6条对于直接承受动力荷载的结构:在计算强度和稳定性时,动力荷载设计值应乘动力系数;在计算疲劳和变形时,动力荷载标准值不应乘动力系数。计算吊车梁或吊车桁架及其制动结构的疲劳时,吊车荷载应按作用在跨间内起重量最大的一台吊车确定。
第3.1.7条设计钢结构时,荷载的标准值、荷载分项系数、荷载组合系数、动力荷载的动力系数以及按结构安全等级确定的重要性系数,应按《建筑结构荷载规范》(GBJ9-87)的规定采用。
第3.1.8条计算重级工作制吊车梁(或吊车桁架)及其制动结构的强度和稳定性以及连接的强度时,吊车的横向水平荷载应乘以表3.1.8的增大系数。
第3.1.9条计算平炉、电炉、转炉车间或其它类似车间的工作平台结构时,由检修材料所产生的荷载,可乘以下列折减系数:
第3.2.1条钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径(对3号钢按表3.2.1-1的分组)按表3.2.1-2采用。钢铸件的强度设计值应按表3.2.1-3
第3.2.2条计算下列情况的结构构件或连接时,第3.2.1条规定的强度设计值应乘以相应的折减系数:
第3.3.1条计算钢结构变形时,可不考虑螺栓(或铆钉)孔引起的截面削弱。
第3.3.3条多层框架结构在风荷载作用下的顶点水平位移与总高度之比值不宜大于1/500,层间相对位移与层高之比值不宜大于1/400。
注:对室内装修要求较高的民用建筑多层框架结构,层间相对位移与层高之比值宜适当减小。无隔墙的多层框架结构,层间相对位移可不受限制。
第3.3.4条在设有重级工作制吊车的厂房中,跨间每侧吊车梁或吊车桁架的制动结构,由一台最大吊车横向水平荷载所产生的挠度不宜超过制动结构跨度的1/2200。
第3.3.5条设有重级工作制吊车的厂房柱和设有中、重级工作制吊车的露天栈桥柱,在吊车梁或吊车桁架的顶面标高处,由一台最大吊车水平荷载所产生的计算变形值,不应超过表3.3.5中所列的容许值。
第4.1.3条当梁上翼缘受有沿腹板平面作用的集中荷载、且该荷载处又未设置支承加劲肋时,腹板计算高度上边缘的局部承压强度应按下式计算:
第4.1.4条在组合梁的腹板计算高度边缘处,若同时受有较大的正应力、剪应力和局部压应力,或同时受有较大的正应力和剪应力(如连续梁支座处或梁的翼缘截面改变处等),其折算应力应按下式计算:
式中σ、τ、σc——腹板计算高度边缘同一点上同时产生的正应力、剪应力和局部压应力,r和σ c应按公式(4.1.2)和公式(4.1.3-1)计算,σ应按下式计算:
一、有铺板(各种钢筋混凝土板和钢板)密铺在梁的受压翼缘上并与其牢固相连、能阻止梁受压翼缘的侧向位移时。
二、工字形截面筒支梁受压翼缘的自由长度L1与其宽度B1之比不超过表4.2.1所规定的数值时。
对跨中无侧向支承点的梁,L1 为其跨度;对跨中有侧向支承点的梁,L1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧向支承)。
第4.2.2条除第4.2.1条所指情况外,在最大刚度主平面内受弯的构件,其整体稳定性应按下式计算:
第4.2.3条除第4.2.1条所指情况外,在两个主平面受弯的工字形截面构件,其整体稳定性应按下式计算:
第4.2.4条不符合第4.2.1条第一项情况的箱形截面简支梁,其截面尺寸(图4.2.4)应满足h/bo ≤6,且L1/bo 不应超过下列数值:
第4.2.5条用作减少梁受压翼缘自由长度的侧向支撑,其轴心力应根据侧向力F确定,梁的侧向力应按下式计算:
第4.3.1条为保证组合梁腹板的局部稳定性,应按下列规定在腹板上配置加劲肋(图4.3.1):
一、当ho /tw ≤80235/fy时,对有局部压应力(σc≠0)的梁, 宜按构造配置横向加劲肋;但对无局部压应力(σc=0)的梁,可不配置加劲肋。
二、当80235/fy <ho /tw ≤170235/fy时,应配置横向加劲肋,并应按第4.3.2条的规定进行计算(对无局部压应力的梁,当ho /tw ≤100235/fy 时,可不计算)。
三、当ho /tw >170235/fy 时,应配置横向加劲肋和在受压区配置纵向加劲肋,必要时尚应在受压区配置短加劲肋,并均应按第4.3.2条的规定进行计算。此处ho为腹板的计算高度,tw为腹板的厚度。
四、梁的支座处和上翼缘受有较大固定集中荷载处,宜设置支承加劲肋,并应按第4.3.8条的规定进行计算。
第4.3.2条无局部压应力(σc=0)的梁和简支吊车梁,当其腹板用横向加劲肋加强或用横向和纵向加劲肋加强时,应按第 4.3.3条至第4.3.6条计算加劲肋间距。其它情况的梁,应按附录二计算腹板的局部稳定性。
第4.3.3条无局部压应力(σ=0)的梁,其腹板仅用横向加劲肋加强时,横向加劲肋间距α应符合下列要求:
σ——与τ同一截面的腹板计算高度边缘的弯曲压应力(N/mm2),应按σ=My/I计算,I为梁毛截面惯性矩,y1为腹板计算高度受压边缘至中和轴的距离。公式(4.3.3.1)右端算得的值若大于第4.3.7条规定的最大间距时,应取α不超过最大间距。
第4.3.4条无局部压应力(σc=0)的梁,其腹板同时用横向加劲肋和纵向加劲肋加强时(图4.3.1b、c),纵向加劲肋至腹板计算高度受压边缘的距离h1应在ho/5~/ho/4范围内,并应符合下式的要求:
中σ——所考虑区段内最大弯矩处腹板计算高度边缘的弯曲压应力(N燉mm2),应按σ=MmaxY1/I计算。横向加劲肋间距a仍应按第4.3.3条和第4.3.7条确定,但应以h2代替h0,并取η=1.0。
第4.3.5条简支吊车梁的腹板仅用横向加劲肋加强时,加劲肋的间距a应同时符合下列公式的要求:
公式(4.3.5-1)和公式(4.3.5-2)右端算得的值若大于2ho或分母为负值时,应取a=2ho。对变截面吊车梁,当端部变截面区段长度不超过梁跨度的1/6时,a值应按下列情况确定:
一、腹板高度变化的吊车梁:端部变截面区段的a值应符合公式(4.3.5-1)的要求,式中的ho取该区段的腹板平均计算高度,τ取梁端部腹板的最大平均剪应力;不变截面区段内的a值,应同时符合公式(4.3.5-1)和公式(4.3.5-2)的要求,式中τ取两区段交界处的腹板平均剪应力。
二、翼缘截面变化的吊车梁:由端部至变截面处区段的a值,应同时符合公式(4.3.5-1)和公式(4.3.5-2)的要求,但σ取变截面处腹板计算高度边缘的弯曲压应力,同时由表4.3.5-2查得的k3、k4值应乘以0.75;中部不变截面区段的a值,应同时符合公式(4.3.5-1)和公式(4.3.5-2)的要求,但τ取变截面处的腹板平均剪应力
第4.3.6条简支吊车梁的腹板同时用横向加劲肋和纵向加劲肋加强时(图4.3.1b、c),纵向加劲肋至腹板计算高度受压边缘的距离h1应在h0/5~h0/4范围内,并应符合下列公式的要求:
当公式(4.3.6-1)或公式(4.3.6-2)右端算得的值小于ho/5时,尚应在腹板受压区配置短加劲肋(图4.3.1d),并应按附录二进行计算。
横向加劲肋间距α应按公式(4.3.5-1)确定,但应以h2代替式中的ho,以0.3σc代替表4.3.5-1中的σc。若公式(4.3.5-1)右端算得的值大于2h2或分母为负值时,应取a≤2h2。对腹板高度变化的吊车梁:在确定梁端部变截面区段内(有纵向加劲肋)的α值时,h2取该区段腹板下区格的平均高度,τ取该区段梁端部处的腹板平均剪应力;在确定不变截面区段内的α值时,τ取两区段交界处的腹板平均剪应力。对翼缘截面变化的吊车梁,确定α值时,τ取梁端部腹板平均剪应力。
第4.3.7条加劲肋宜在腹板两侧成对配置,也可单侧配置,但支承加劲肋和重级工作制吊车梁的加劲肋不应单侧配置。横向加劲肋的最小间距为0.5ho,最大间距为2ho(对无局部压应力的梁,当ho/tw≤100时,可采用2.5ho)。
在腹板一侧配置的钢板横向加劲肋,其外伸宽度应大于按公式(4.3.7-1)算得的1.2倍,厚度不应小于其外伸宽度的1/15。在同时用横向加劲肋和纵向加劲肋加强的腹板中,横向加劲肋的截面尺寸除应符合上述规定外,其截面惯性矩Iz尚应符合下式要求:
短加劲肋的最小间距为0.75h1。短加劲肋外伸宽度应取为横向加劲肋外伸宽度的0.7~1.0倍,厚度不应小于短加劲肋外伸宽度的1/15。
注:①用型钢(工字钢、槽钢、肢尖焊于腹板的角钢)作成的加劲肋,其截面惯性矩不得小于相应钢板加劲肋的惯性矩。
②在腹板两侧成对配置的加劲肋,其截面惯性矩应按梁腹板中心线为轴线进行计算。
在腹板一侧配置的加劲肋,其截面惯性矩应按与加劲肋相连的腹板边缘为轴线条梁的支承加劲肋,应按承受梁支座反力或固定集中荷载的轴心受压构件计算其在腹板平面外的稳定性。此受压构件的截面应包括加劲肋和加劲肋每侧15tw235/fy范围内的腹板面积,其计算长度取ho。
梁支承加劲肋的端部应按其所承受的支座反力或固定集中荷载进行计算:当端部为刨平顶紧时,计算其端面承压应力(对突缘支座尚应符合第8.4.13条的要求);当端部为焊接时,计算其焊缝应力。
注:翼缘板自由外伸宽度b的取值为:对焊接构件,取腹板边至翼缘板(肢)边缘的距离;对轧制构件,取内圆弧起点至翼缘板(肢)边缘的距离。
第5.1.1条轴心受拉构件和轴心受压构件的强度,除摩擦型高强度螺栓连接处外,应按下式计算:
第5.1.3条格构式轴心受压构件的稳定性仍应按公式(5.1.2)计算,但对虚轴(图5.1.3a的x轴和图5.1.3b、c的x轴和y轴)的长细比应取换算长细比。
②斜缀条与构件轴线条对格构式轴心受压构件:当缀件为缀条时,其分肢的长细比λ1不应大于构件两方向长细比(对虚轴取换算长细比)的较大值λmax的0.7倍,当缀件为缀板时,λ1不应大于40,并不应大于λmax的0.5倍(当λmax<50时,取λmax=50)。
第5.1.5条用填板连接而成的双角钢或双槽钢构件,可按实腹式构件进行计算,但填板间的距离不应超过下列数值:
一、当为图5.1.5α、b所示的双角钢或双槽钢截面时,取一个角钢或一个槽钢与填板平行的形心轴的回转半径;
第5.1.7条用作减小轴心受压构件自由长度的支撑,其轴心力应根据被支承构件的剪力v(作为侧向力)确定。v可按公式(6)计算。
第5.2.1条弯矩作用在主平面内的拉弯构件和压弯构件,其强度应按下列规定计算:
(1)无横向荷载作用时:βmx=0.65+0.35M2M1,但不得小于0.4,M1和M2为端弯矩,使构件产生同向曲率(无反弯点)时取同号,使构件产生反向曲率(有反弯点)时取异号,M1≥M2;
(3)无端弯矩但有横向荷载作用时;当跨度中点有一个横向集中荷载作用时,βmx=1-0.2N/NEx;其它荷载情况时,βmx=1.0对于表5.2.1第3、4项中的单轴对称截面压弯构件,当弯矩作用在对称轴平面内且使较大翼缘受压时,除应按公式(5.2.2-1)计算外,尚应按下式计算:
式中φy——弯矩作用平面外的轴心受压构件稳定系数;φb——均匀弯曲的受弯构件整体稳定系数,对工字形和T形截面可按附录一第(五)项确定,对箱形截面可取φb=1.4;Mx——所计算构件段范围内的最大弯矩;βtx——等效弯矩系数,应按下列规定采用:
1.在弯矩作用平面外有支承的构件,应根据两相邻支承点间构件段内的荷载和内力情况确定:
(1)所考虑构件段无横向荷载作用时:βtx=0.65+0.35M2M1,但不得小于0.4,M1和M2是在弯矩作用平面内的端弯矩,使构件段产生同向曲率时取同号,产生反向曲率时取异号,M1≥M2;
(2)所考虑构件段内有端弯矩和横向荷载同时作用时;使构件段产生同向曲率时,βtx=1.0;使构件段产生反向曲率时,βtx=0.85;
注:①无侧移框架系指框架中设有支撑架、剪力墙、电梯并等支撑结构,且共抗侧移刚度等于或大于框架本身抗侧移刚度的5倍者。
②有侧移框架系指框架中未设上述支撑结构,或支撑结构的抗侧移刚度小于框架本身抗侧移刚度的5倍者。
第5.2.3条弯矩绕虚轴(x轴)作用的格构式压弯构件,其弯矩作用平面内的整体稳定性应按下式计算:
第5.2.4条弯矩绕实轴作用的格构式压弯构件,其弯矩作用平面内和平面外的稳定性计算均与实腹式构件相同。但在计算弯矩作用平面外的整体稳定性时,长细比应取换算长细比,φb应取1.0。
第5.2.5条弯矩作用在两个主平面内的双轴对称实腹式工字形和箱形截面的压弯构件,其稳定性应按下列公式计算:
第5.2.7条计算格构式压弯构件的缀件时,应取构件的实际剪力和按公式(5.1.6)计算的剪力两者中的较大值进行计算。
第5.2.8条用作减小压弯构件弯矩作用平面外计算长度的支撑,其轴心力应按公式(4.2.5)计算的侧向力确定,但式中Af为被支承构件的受压翼缘(对实腹式构件)或受压分肢(对格构式构件)的截面面积。
当桁架弦杆侧向支承点之间的距离为节间长度的2倍(图5.3-1)且两节间的弦杆轴心压力有变化时,则该弦杆在桁架平面外的计算长度,应按下式确定(但不应小于0.5L1):N
当相交的另一杆受拉,且两杆在交叉点均不中断0.5l当相交的另一杆受拉,两杆中有一杆在交叉点中断并以节点板搭接0.7l其它情况l
③当确定交叉腹杆中单角钢压杆斜平面内的长细比时,计算长度应取节点中心至交叉点的距离。
第5.3.3条单层或多层框架等截面柱,在框架平面内的计算长度应等于该层柱的高度乘以计算长度系数μ。对无侧移框架,μ值应按附表4.1确定;对有侧移框架,μ值应按附表4.2确定。
第5.3.4条单层厂房框架下端刚性固定的阶形柱,在框架平面内的计算长度应按下列规定确定:
1.下段柱的计算长度系数μ2:当柱上端与横梁铰接时,等于按附表4.3(柱上端为自由的单阶柱)的数值乘以表5.3.4的折减系数;当柱上端与横梁刚接时,等于按附表4.4(柱上端可移动但不转动的单阶柱)的数值乘以表5.3.4的折减系数。
第5.3.6条框架柱沿房屋长度方向(在框架平面外)的计算长度应取阻止框架平面外位移的支承点(柱的支座、吊车梁、托架以及支撑和纵梁的固定节点等)之间的距离。
④在设有夹钳吊车或刚性料耙吊车的厂房中,支撑(表中第2项除外)的长细比不宜超过300。
第5.4.1条在受压构件中,翼缘板自由外伸宽度b与其厚度t之比,应符合下列要求:
第6.1.1条承受动力荷载重复作用的钢结构构件(如吊车梁、吊车桁架、工作平台梁等)及其连接,当应力变化的循环次数n等于或大于105次时,应进行疲劳计算。
第6.1.2条本章规定不适用于特殊条件(如构件表面温度大于150℃,处于海水腐蚀环境,焊后经热处理消除残余应力以及低周-高应变疲劳条件等)下的结构构件及其连接的疲劳计算。
第6.1.3条疲劳计算应采用容许应力幅法,应力按弹性状态计算,容许应力幅按构件和连接类别以及应力循环次数确定。在应力循环中不出现拉应力的部位可不计算疲劳。
第6.2.2条重级工作制吊车梁和重级、中级工作制吊车桁架的疲劳可作为常幅疲劳按下式计算:
一、在对接接头和T形接头中,垂直于轴心拉力或轴心压力的对接焊缝,其强度应按下式计算:N
注:①当承受轴心力的板件用斜焊缝对接,焊缝与作用力间的夹角θ符合tgθ≤1.5时,其强度可不计算。
当熔合线处焊缝截面边长等于或接近于最短距离s时(图7.1.4b、c、e),抗剪强度设计值应按角焊缝的强度设计值乘以0.9。在垂直于焊缝长度方向的压力作用下,强度设计值可采用角焊缝的强度设计值乘以1.22。
一、在普通螺栓或铆钉受剪的连接中,每个普通螺栓或铆钉的承载力设计值应取受剪和承压承载力设计值中的较小者:
三、同时承受剪力和杆轴方向拉力的普通螺栓和铆钉,应分别符合下列公式的要求:
二、在抗剪连接中,每个承压型高强度螺栓的承载力设计值的计算方法与普通螺栓相同,但当剪切面在螺纹处时,其受剪承载力设计值应按螺纹处的有效面积进行计算。
三、在杆轴方向受拉的连接中,每个承压型高强度螺栓的承载力设计值,Nbt=0.8p。
四、同时承受剪力和杆轴方向拉力的承压型高强度螺栓,应符合下列公式的要求:
二、搭接或用拼接板的单面连接,螺栓(摩擦型高强度螺栓除外)或铆钉数目,应按计算增加10%。
三、在构件的端部连接中,当利用短角钢连接型钢(角钢或槽钢)的外伸肢以缩短连接长度时,在短角钢两肢中的一肢上,所用的螺栓或铆钉数目应按计算增加50%。
四、当铆钉连接的铆合总厚度超过铆钉直径的5倍时,总厚度每超过2mm,铆钉数目应按计算增加1%(至少应增加一个铆钉),但铆合总厚度不得超过铆钉直径的7倍。
第7.3.2条组合工字梁翼缘与腹板的铆钉(或摩擦型高强度螺栓)的承载力,应按下式计算:
第7.4.3条滚轴与平板自由接触(图7.4.3)的承压应力应按下式计算:
第7.4.4条轴心受压柱或压弯柱的端部为铣平端时,柱身的最大压力直接由铣平端传递,其连接焊缝、铆钉或螺栓应按最大压力的15%计算;当压弯柱出现受拉区时,该区的连接尚应按最大拉力计算。
第8.1.1条钢结构的构造应便于制作、安装、维护并使结构受力简单明确,减少应力集中。以受风载为主的空腹结构,应力求减少受风面积。第8.1.2条在钢结构的受力构件及其连接中,不宜采用:厚度小于5mm的钢板;厚度小于3mm的钢管;截面小于45×4或56×36×4的角钢(对焊接结构)或截面小于50×5的角钢(对螺栓连接或铆钉连接结构)。但第十一章的轻型钢结构不受此限。
第8.1.3条焊接结构是否需要采用焊前预热或焊后热处理等特殊措施,应根据材质、焊件厚度、焊接工艺、施焊时气温等综合因素来确定。在正常情况下,焊件的厚度为:对低碳钢,不宜大于50mm;对低合金钢,不宜大于36mm。第8.1.4条为了保证结构的空间工作,提高结构的整体刚度,承担和传递水平力,防止杆件产生过大的振动,避免压杆的侧向失稳,以及保证结构安装时的稳定,应根据结构及其荷载的不同情况设置可靠的支撑系统。在建筑物每一个温度区段或分期建设的区段中,应分别设置独立的空间稳定的支撑系统。
第8.1.5条单层房屋和露天结构的温度区段长度(伸缩缝的间距),当不超过表8.1.5的数值时,可不计算温度应力。
第8.2.1条焊缝金属宜与基本金属相适应。当不同强度的钢材连接时,可采用与低强度钢材相适应的焊接材料。
第8.2.2条在设计中不得任意加大焊缝,避免焊缝立体交叉和在一处集中大量焊缝,同时焊缝的布置应尽可能对称于构件重心。
注:钢板的拼接:当采用对接焊缝时,纵横两方向的对接焊缝,可采用十字形交叉或丁形交叉;当为T形交叉时,交叉点的间距不得小于200mm。
第8.2.3条对接焊缝的坡口形式,应根据板厚和施工条件按现行标准《手工电弧焊焊接接头的基本型式与尺寸》和《埋弧焊焊接接头的基本型式与尺寸》的要求选用。
三、角焊缝的两焊脚尺寸一般为相等。当焊件的厚度相差较大,且等焊脚尺寸不能符合本条第一、二项要求时,可采用不等焊脚尺寸,与较薄焊件接触的焊脚边应符合本条第二项的要求;与较厚焊件接触的焊脚边应符合本条第一项的要求。
五、侧面角焊缝的计算长度不宜大于60hf(承受静力荷载或间接承受动力荷载时)或40hf(承受动力荷载时);当大于上述数值时,其超过部分在计算中不予考虑。若内力沿侧面角焊缝全长分布时,其计算长度不受此限。
第8.2.8条在直接承受动力荷载的结构中,角焊缝表面应做成直线形或凹形。焊脚尺寸的比例:对正面角焊缝宜为1∶1.5(长边顺内力方向);对侧面角焊缝可为1∶1。
第8.2.9条在次要构件或次要焊缝连接中,可采用断续角焊缝。断续角焊缝之间的净距,不应大于15t(对受压构件)或30t(对受拉构件),t为较薄焊件的厚度。
第8.2.10条当板件的端部仅有两侧面角焊缝连接时,每条侧面角焊缝长度不宜小于两侧面角焊缝之间的距离;同时两侧面角焊缝之间的距离不宜大于16t(当t>12mm)或200mm(当t≤12mm),t为较薄焊件的厚度。
第8.2.11条杆件与节点板的连接焊缝(图8.2.11),一般宜采用两面侧焊,也可用三面围焊,对角钢杆件可采用L形围焊,所有围焊的转角处必须连续施焊。
第8.3.1条每一杆件在节点上以及拼接接头的一端,永久性的螺栓(或铆钉)数不宜少于两个。对组合构件的缀条,其端部连接可采用一个螺栓(或铆钉)。
第8.3.2条高强度螺栓孔应采用钻成孔。摩擦型高强度螺栓的孔径比螺栓公称直径d大1.5~2.0mm;承压型高强度螺栓的孔径比螺栓公称直径d大1.0~1.5mm。
第8.3.3条在高强度螺栓连接范围内,构件接触面的处理方法应在施工图中说明。
第8.3.5条c级螺栓宜用于沿其杆轴方向受拉的连接,在下列情况下可用于受剪连接:
第8.3.6条对直接承受动力荷载的普通螺栓连接应采用双螺帽或其它能防止螺帽松动的有效措施。
第8.3.7条当型钢构件的拼接采用高强度螺栓连接时,其拼接件宜采用钢板。 第8.3.8条沉头和半沉头铆钉不得用于沿其杆轴方向受拉的连接。
第8.4.1条在缀材面剪力较大或宽度较大的格构式柱,宜采用缀条柱。缀板柱中,同一截面处缀板(或型钢横杆)的线刚度之和不得小于柱较大分肢线条当实腹式柱的腹板计算高度ho与厚度tw之比大于80时,应采用横向加劲肋加强,其间距不得大于3ho。
第8.4.3条格构式柱或大型实腹式柱,在受有较大水平力处和运送单元的端部应设置横隔,横隔的间距不得大于柱截面较大宽度的9倍或8m。
第8.4.4条焊接桁架应以杆件重心线为轴线,螺栓(或铆钉)连接的桁架可采用靠近杆件重心线的螺栓(或铆钉)准线为轴线,在节点处各轴线应交于一点。当桁架弦杆的截面变化时,如轴线变动不超过较大弦杆截面高度的5%,可不考虑其影响。
第8.4.5条分析桁架杆件内力时,可将节点视为铰接。当桁架杆件为H型、箱型等刚度较大的截面,且在桁架平面内的杆件截面高度与其几何长度(节点中心间的距离)之比大于1/10(对弦杆)或大于1/15(对腹杆)时,应考虑节点刚性所引起的次弯矩。
第8.4.6条当桁架杆件用节点板连接时,弦杆与腹杆、腹杆与腹杆之间的间隙,不宜小于20mm。
第8.4.7条节点板厚度一般根据所连接杆件内力的大小确定,但不得小于6mm。节点板的平面尺寸应适当考虑制作和装配的误差。
第8.4.8条跨度大于36m的两端铰支桁架,应考虑在竖向荷载作用下,下弦弹性伸长所产生水平推力对支承构件的影响。
第8.4.9条两端简支、跨度为15m或15m以上的三角形屋架和跨度为24m或24m以上的梯形和平行弦桁架,当下弦无曲折时,宜起拱,拱度约为跨度的1/500。
第8.4.10条焊接梁的翼缘一般用一层钢板作成,当采用两层钢板时,外层钢板与内层钢板厚度之比宜为0.5~1.0。不沿梁通长设置的外层钢板,其理论截断点处的外伸长度l1应符合下列要求:
第8.4.11条铆接(或摩擦型高强度螺栓连接)梁的翼缘板不宜超过三层,翼缘角钢面积不宜少于整个翼缘面积的30%,当采用最大型号的角钢仍不能符合此要求时,可加设腋板(图8.4.11)。此时角钢与腋板面积之和不应少于翼缘总面积的30%。当翼缘板不沿梁通长设置时,理论截断点处外伸长度内的铆钉(或摩擦型高强度螺栓)数目,应按该板1/2净截面面积的承载力进行计算。
第8.4.14条柱脚锚栓不得用以承受柱脚底部的水力,此水力应由底板与混凝土基础间的摩擦力或设置抗剪键承受。
第8.4.15条柱脚锚栓埋置在基础中的深度,应使锚栓的内力通过其和混凝土之间的粘结力传递。当埋置深度受到限制时,则锚栓应牢固地固定在锚板或锚梁上,以传递锚栓的全部内力,此时锚栓与混凝土之间的粘结力可不予考虑。
一、在桁架节点处,腹杆与弦杆之间的间隙a不宜小于50mm,节点板的两侧边宜作成半径r不小于60mm的圆弧;节点板边缘与腹杆轴线);节点板与角钢弦杆的连接焊缝,起落弧点应至少缩进5mm(图8.5.3a);
节点板与工字钢弦杆的T形连接焊缝应予焊透,圆弧处不得有起落弧缺陷,其中重级工作制吊车桁架的圆弧处应予打磨,使之与弦杆平缓过渡(图8.5.3b)。
二、杆件的填板当用焊缝连接时,焊缝起落弧点应缩进至少5mm(图8.5.3c),重级工作制吊车桁架杆件的填板应采用高强度螺栓连接。
第8.5.4条吊车梁翼缘板或腹板的焊接拼接应采用加引弧板的焊透对接焊缝,引弧板割去处应予打磨平整。吊车梁的工地整段拼接宜采用摩擦型高强度螺栓。
第8.5.5条在焊接吊车梁或吊车桁架中,下列部位的T形连接应予焊透;焊缝质量不低于二级焊缝标准(形式见图8.5.5):
第8.5.8条重级工作制吊车梁中,上翼缘与制动结构的连接以及对柱传递水平力的连接,宜采用摩擦型高强度螺栓。吊车梁端部与柱的连接构造应设法减少由于吊车梁弯曲变形而在连接处产生的附加应力。
第8.5.9条当吊车桁架和重级工件制吊车梁跨度等于或大于12m,或轻、中级工作制吊车梁跨度等于或大于18m时,宜设置辅助桁架和水平支撑系统。当设置垂直支撑时,其位置不宜在吊车梁或吊车桁架竖向挠度较大处。
第8.5.10条重级工作制吊车梁的受拉翼缘板(或吊车桁架的受拉弦杆)边缘,宜采用自动精密气割,当用手工气割或剪切机切割时,应沿全长刨边。
第8.5.11条吊车梁的受拉翼缘(或吊车桁架的受拉弦杆)上不得焊接悬挂设备的零件,并不宜在该处打火或焊接夹具。
当采用焊接长轨且用压板与吊车梁连接时,压板与钢轨间的接触不得过于紧密,以使钢轨受温度作用后有纵向伸缩的可能。
第8.7.1条钢结构除必须采取防锈措施(彻底除锈后涂以油漆和镀锌等)外,尚应在构造上尽量避免出现难于检查、清刷和油漆之处以及能积留湿气和大量灰尘的死角或凹槽。闭口截面构件应沿全长和端部焊接封闭。除有特殊需要外,设计中一般不应因考虑锈蚀而加大钢材截面或厚度。
第8.7.2条柱脚在地面以下的部分应采用强度等级较低的混凝土包裹(保护层厚度不应小于50mm),并应使包裹的混凝土高出地面约150mm。当柱脚底面在地面以上时,则柱脚底面应高出地面不小于100mm。
第8.7.3条受侵蚀介质作用的结构以及在使用期间不能重新油漆的结构部位应采取特殊的防锈措施。受侵蚀性介质作用的柱脚不宜埋入地下。
一、当结构可能受到炽热熔化金属的侵害时,应采用砖或耐热材料做成的隔热层加以保护;
二、当结构的表面长期受辐射热达150℃以上或在短时间内可能受到火焰作用时,应采取有效的防护措施(如加隔热层或水套等)。
第9.2.1条弯矩Mx(对工字形截面x轴为强轴)作用在一个主平面内的受弯构件,其弯曲强度应符合下式要求:
Mx≤Wpnxf (9.2.1)式中Wpnx——对x轴的净截面塑性抵抗矩。
V≤hwtwfv (9.2.2)式中hw、tw——腹板高度和厚度;fv——塑性设计时采用的钢材抗剪强度设计值,见第9.1.3条。 第9.2.3条弯矩作用在一个主平面内的压弯构件,其强度应符合下列公式的要求:
压弯构件的压力N不应大于0.6Anf,其剪切强度应符合公式(9.2.2)的要求。
第9.2.4条弯矩作用在一个主平面内的压弯构件,其稳定性应符合下列公式的要求:
φy、φb和βtx应按第5.2.2条计算弯矩作用平面外稳定的有关规定采用。
第9.3.2条在构件出现塑性铰的截面处,必须设置侧向支承。该支承点与其相邻支承点间构件的长细比λy,应符合下列要求:
对不出现塑性铰的构件区段,其侧向支承点间距,应由第四章和第五章内有关弯矩作用平面外的整体稳定计算确定。
第9.3.5条当板件采用手工气割或剪切机切割时,应将出现塑性铰部位的边缘刨平。当螺栓孔位于构件塑性铰部位的受拉板件上时,应采用钻成孔或先冲后扩钻孔。
第10.0.1条本章规定适用于不直接承受动力荷载、在节点处直接焊接的圆管结构。
第10.0.4条钢管构件在承受较大横向荷载的部位应采取适当的加强措施,防止产生过大的局部变形。钢管构件的主要受力部位应避免开孔,如必须开孔时,应采取适当的补强措施。 第10.0.5条支管与主管的连接可沿全周采用角焊缝,也可部分采用角焊缝、部分采用对接焊缝,支管管壁与主管管壁之间的夹角大于或等于120°的区域宜采用对接焊缝或带坡口的角焊缝。角焊缝的焊脚尺寸hf不宜大于支管壁厚的两倍。
第10.0.6条支管与主管的连接焊缝可视为全周角焊缝按公式(7.1.2-1)进行计算,但取βf=1。角焊缝的有效厚度沿支管周长是变化的,当支管轴心受力时,平均有效厚度可取0.7hf。焊缝的计算长度(支管与主管相交线长度)可按下列公式计算:
注:①本条适用范围为:0.2≤β≤1.0,ds/ts≤50(ts-支管壁厚),θ≥30°。当d/t>50时,取d/t=50。
第11.0.1条本章规定仅适用于在跨度不超过18m且起重量不大于5t的轻、中级工作制桥式吊车的房屋中,采用有圆钢或小角钢(小于45×4或56×36×4)的轻型钢结构。
第11.0.2条本章规定不适用于使用条件复杂的轻型钢结构(如直接承受动力荷载,处于高温、高湿和强烈侵蚀环境的轻型钢结构等)所需的特殊要求。
第11.0.3条轻型钢结构的强度设计值,应按第3.2.1条、第3.2.2条和第11.0.6条的规定值并乘以下列折减系数:
第11.0.4条在桁架中,应尽可能使杆件重心线在节点处交于一点,否则应考虑其偏心的影响。
第11.0.5条三铰拱屋架的三角形组合斜梁,其截面高度与斜梁长度的比值不得小于1/18,截面宽度与截面高度的比值不得小于2/5。
第11.0.6条单圆钢压杆连接于节点板一侧时,杆件应按公式(5.2.2-1)计算其稳定性,连接可按公式(11.0.8-1)计算,但焊缝强度设计值应乘以0.85。单圆钢拉杆连接于节点板一侧时,杆件和连接可按轴心受拉构件计算强度,但强度设计值应降低15%。
第11.0.7条桁架中的主要压杆(弦杆、端斜杆、端竖杆)的长细比不宜大于150,其它压杆的长细比不宜大于200。
第11.0.8条圆钢与平板(钢板或型钢的平板部分,图11.0.8-1)、圆钢与圆钢(图11.0.8-2)之间的焊缝,其抗剪强度应按下式计算:
第12.1.2条混凝土翼板的有效宽度be(图12.1.2)应按下式计算:
第12.1.3条按本章规定考虑全截面塑性发展进行组合梁的强度计算时,钢梁钢材的强度设计值应按第3.2.1条和第3.2.2条的规定乘以折减系数0.9。组合梁的变形计算应按弹性理论进行,对荷载的短期效应组合,可将截面中的混凝土翼板计算宽度除以钢材与混凝土弹性模量的比值αE换算为钢截面;对荷载的长期效应组合,则除以2αE换算为钢截面。
第12.3.3条按公式(12.2.3)算得的连接件数量,可在最大弯矩点与零弯矩点之间均匀布置。当此两点间有较大的集中荷载作用时,则应将连接件数量按各段剪力图面积之比进行分配,再各自均匀布置。
第12.3.4条圆柱头焊钉连接件的长度不应小于4d(d为焊钉直径)。在施焊时应采用专门的焊接机具和工艺方法牢固地焊于钢梁翼缘上,其沿梁跨度方向的间距不宜小于6d,垂直于梁跨度方向的间距不宜小于4d。
第12.3.5条槽钢连接件的翼缘肢尖方向应与混凝土翼板对钢梁的水平剪应力方向一致,其与钢梁上翼缘的连接焊缝应按第七章的有关规定计算。
第12.3.6条弯起钢筋宜采用直径d不小于12mm的I级钢筋成对对称布置,用两条长度不小于4d的侧焊缝焊接于钢梁翼缘上,其弯起角度一般为45°,弯折方向应与混凝土翼板对钢梁的水平应力方向一致。在梁跨中可能产生剪应力变号处,必须在两个方向均有弯起钢筋。每个弯起钢筋从弯起点算起的总长度不宜小于25d(Ⅰ级钢筋另加弯钩),其中水平段长度不宜小于10d。
第12.3.7条圆柱头焊钉钉头下表面或槽钢连接件上翼缘下表面应比混凝土翼板底部钢筋高出30mm以上。
连接件顶面的混凝土保护层厚度不应小于15mm。圆柱头焊钉钉杆的外表面或槽钢连接件的端面:至钢梁上翼缘侧边的距离不应小于20mm;至混凝土板托侧边的距离不应小于40mm;至混凝土翼板侧边的距离不应小于100mm。
第12.3.8条钢梁顶面不得涂刷油漆,在灌浇(或安装)混凝土翼板以前应清除铁锈、焊渣、冰层、积雪、泥土和其它杂物。
轧制槽钢简支梁的整体稳定系数,不论荷载的形式和荷载作用点在截面高度上的位置,均可按下式计算:
用横向加劲肋加强的腹板(图4.3.1a),其各区格的局部稳定性应按下式计算:
注:当产生局部压应力σc的荷载作用于梁受拉翼缘时,则应分别假定σc=0和σ=0,按公式(附2.1)计算腹板各区格的稳定性。
同时用横向加劲肋和纵向加劲肋加强的腹板(图4.31b、c),其局部稳定性应按下列公式计算:
②当产生局部压应力C1的荷载作用于梁的受拉翼缘时,应分别假定σc2=0(用σ3和τ)和假定σ2=0(用σc2=σc和τ),按公式(附2.10)计算受拉翼缘与纵向加劲肋之间腹板各区格的局部稳定性。
1.受压翼缘与纵向加劲肋之间区格,按公式(附2.6)计算,但以α1(图4.3.1d)代替α。